

Bracing Systems

Rod Bracing

HOW BRACING WORKS

The WIND load on Endwall panels...

is dispersed through Endwall framing...

into the Continuous Purlin system.

The Purlins transfer the load...

into the roof Brace Rods.

The load travels through the Roof bracing...

through the Eave Purlin ...

to the wall Diagonal Bracing ...

into the Building's foundation.

into the Building's foundation.

Transverse (Perpendicular to Sidewall)

Figure 1 Transverse load resisting systems

Standard EP Location

Roof Rods Break at Endpost(s)

Wind Bracing

If possible, keep endpost spacing

similar at each endwall for a more efficient bracing pattern.

BLUESCOPE STEEL	Тур	ical Ro	od Bracing Location
	e estien ef	aread have	DESIGN PROCEDURES DP 5.1
Table 2 L	Brac	ed Bays	BLUESCOPE BUILDINGS General General BRACING 1 of 3 Building Bracing 1 (10/09)
of bays (n)	Minimum (default)	Additional (if more than min. is required)	Roof or Wall Plane
< 3	any <mark>o</mark> ne		
3	middle		
4 - 7	middle	2, n-1	
8 - 12	2, n-1	3, n-2	
> 12	2, n-1	4, n-3	

Notes:

= Bay not braced

= Braced bay – primary locations. For available BBNA lateral-force resisting systems see <u>DP 5.4</u>.

The same DP section also explains the permissible combinations of framing systems

= Braced bay location when additional bays of bracing are needed

Standard Bracing Methods

Diagonal Bracing

- VP standard bracing utilizes Diagonal Bracing in the Roof and Walls.
- The bracing design is determined by:
 - Building Loads & Code
 - Building Size
 - Building Location

Diagonal Rod Bracing

Notes about Diagonal Rod Bracing:

- Stiffest bracing system available
- Most economical bracing system

Diagonal Rods

Diagonal Rods

Alternate Diagonal Bracing

Rod Brace Assembly

Coupling Nuts

 Bracing may be single rods or angles depending upon loading/design

33

Alternative Bracing Methods

Alternative Bracing Methods

Torsional Bracing

Rods are omitted from one sidewall.

Torsional Bracing

No Torsional Allowed if...

Torsion bracing Geometry/Environmental Limitations:

- Non-rectangular shape (maximum of 4 walls)
- Span exceeds 50 ft.
- Eave height exceeds 16 ft.
- Roof pitch exceeds 1:12
- Have less than 3 bays
- Portal braces
- Portal frames
- Cantilevered columns (fixed base wind posts)
- Partial height rods
- Have lean-to frames
- Has a mezzanine
- Has a crane
- Brittle finishes
- Facades
- Wind speed exceeds 110 mph
 - For Canadian jobs: Basic wind pressure exceeds 32 psf
- High Seismic Applications (IBC/ASCE: SDC D, e or F).
 - o For Canadian jobs: $I_E F_a S_{a(0.2)} > 0.35$, and all post-disaster buildings

Alternative Bracing Methods

Notes About Torsional Bracing

- Inexpensive
- Maximum building width of 50'
- Maximum eave height of 18'
- 100 mph maximum wind speed
- Minimum 3 bays

• Call your Service Center if close to these parameters

Rod Brace to Floor

39

Alternative Bracing Methods

Portal Bracing

Portal Brace Includes:

- Portal Beam
- Knee Braces
- Additional column support

Portal Bracing

42

Portal Bracing

Bracing-Wind Posts

Bracing

New Bracing Option

- Fixed Base Wind Post (with automated Wind Post Base Plate Design)
- Use at sidewalls or endwalls
- 35'-0" max. eave height
- Max. 24" column depth
- Connection at main frame is similar to that of portal frame

Post and Beam Stability

Automated diaphragm check
If fails Rods may automatically be designed
Initially at interior bay
Then at endbay

Post and Beam Stability

Alternative Bracing Methods

Notes About Portal Bracing

- More expensive than rod
- •Flexible, not as stiff as diagonal bracing
- •Maximum eave height of 20'
- Special clearances possible

Portal Bracing

Portal Bracing

Portal Bracing???

Alternative Bracing Methods

Portal Frames

Portal Frame Includes:

- Portal Frame Beam
- Portal Frame Columns
- Load Transfer Clips
- Bolts and Nuts

Portal Frame

52

Portal Frame (1/2" offset)

53

Portal Frame

Portal Frame

Alternative Bracing Methods

Notes About Portal Frames

- More expensive than rods
- Relatively stiff (can hold drift on frame)
- Special clearances possible

(Hold column & rafter depths)

Portal Frame

Portal Frame (typical Anchor Rod Detail)

Alternative Bracing Methods

Combination of Rods and Portal Frame

 May be more for building heights above 20' tall.

Partial Height Portal Frame

Bracing Comparisons

(Building Size = 200 x 300 x 19, IBC, 85 MPH Wind - Book Price Shown)

Strut Bracing at Wall

62

Tube Strut

Rod Bracing at Truss Frame

64

Rod Bracing at Truss Frame

Rod Bracing at Facade

No Bracing?!?!?!

- As erection proceeds all Brace Rods, Flange Braces, Struts, Purlin/Girt Laps should be installed before proceeding.
- All buildings will require some temporary bracing until all erection is complete ! Do NOT take any chances !

What Wind Can Do!

Bracing Tips

- Bracing most effective at <u>45 degree</u> angle
- Diagonal bracing always most economical
- Consider <u>Interior Column Bracing</u> at wide buildings
- Consider "<u>shear walls</u>" with masonry, etc.

